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The two-dimensional steady flow of a non-Newtonian fluid (a dilute polymer solution) 
is examined. The flow domain is composed of a parallel-walled inflow region, a contrac- 
tion region in which the walls are rectangular hyperbolae, and a parallel-walled outflow 
region. The problem is formulated in terms of the vorticity, stream function and 
appropriate rheological equation of state, i.e. an Oldroyd-type constitutive equation 
(with no shear-thinning) for the total shear and normal-stress components. Computa- 
tional results from the numerical solution of the equations are presented. In  particular, 
the molecular extension and pressure distribution along the centre-line are presented 
as well as contour plots of the different flow variables. The alignment of the molecules 
with the principal axes of strain rate is shown by a qualitative comparison of the 
streamwise normal-stress contours with contours of the eigenvalues of the strain-rate 
matrix. 

1. Introduction 
An understanding of the flow of dilute suspensions of long-chain macromolecules 

requires information about such basic flow variables as velocity and pressure and, in 
addition, information about stress and strain-rate fields. Such media display the 
drag-reduction phenomenon in turbulent liquid flow and, of course, are relevant in 
polymer processing (although here the Concentration may be higher, the similarity of 
the constitutive equations produces similar local behaviour). Our motivation arises 
from the observation of extensive drag reduction caused by the addition of long-chain 
linear macromolecules to a turbulent flow, the Toms phenomenon (Toms 1948). It has 
been suggested (e.g. Lumley 1969; Peterlin 1970) that the relevant mechanism in the 
drag-reducing process is the extension of the molecules in a fluctuating strain-rate 
field of a turbulent flow. Such a molecular extension causes an increase in tensile 
viscosity, and hence in effective viscosity, which damps out the small eddies. This then 
lessens the Reynolds stress in the turbulent buffer layer and shifts to a point further 
from the wall the reduction of the mean profile slope. It should be noted that no 
significant molecular extension occurs in the viscous sublayer since the molecules are 
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FIGURE 1. Flow domain. 

not aligned long enough with the principal axes of the mean strain-rate field owing to 
the strength of the mean vorticity field. We shall not address here the problem of 
turbulent flow of a non-Newtonian fluid, although there are closure assumptions for 
the turbulent problem that make it at least numerically tractable. (Higher-order 
closures such as stress-equation models, however, make even the Newtonian problem 
burdensome.) Rather, it  appears advantageous first to consider a laminar problem with 
a suitable constitutive equation for the behaviour of this viscoelastic fluid and to solve 
a coupled set of partial differential equations governing the motion of the fluid. In  light 
of the above areas of application and, in particular, for molecular extension i t  is 
desirable to study an extensional flow field (Huilgol 1975) to understand better the 
dynamics of such extensions. In  polymer-processing applications understanding the 
basic flow structure as well as stress and strain-rate fields in converging flows in general 
is of much importance. Such a combination of flow fields can be obtained in the 
geometry shown in figure 1 ; here a two-dimensional contraction region whose 
boundaries are rectangular hyperbolae (thus making the flow along the centre-line an 
extensional flow) is preceded and followed by parallel-walled inflow and outflow 
regions (these parallel-walled regions aid in setting up the computational problem). 
Recently Black & Denn (1975) have applied a perturbation technique (expansion in 
the Weissenberg number) to the solution of sink flow of a viscoelastic fluid. Their 
analytical results were then compared with numerical results (Black, Denn & Hsaio 
1975) obtained for a bounded converging flow with a 90" corner and were also com- 
pared with numerical results for a geometry similar to figure 1 but with the contraction 
region bounded by linear line segments. Here we are taking the analysis further in 
that we are numerically solving the motion (specifically, our formulation is in terms 
of the vorticity and stream function) and stress-field equations simultaneously, for 
the time-independent case. Our numerical technique is the finite-difference method, 
and is used to solve equations for the vorticity, stream function, shear and normal- 
stress components and strain-rate tensor throughout the region of figure 1 .  The 
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constitutive equation here is a three-constant Oldroyd model for the total stress tensor 
(the general form is that of the Oldroyd B fluid, Oldroyd 1950) which corresponds to 
a convective Maxwell model for the extra stress due to the presence of the molecules. 
It is based on the assumption of a linear spring constant, a constant friction factor 
and no submolecules, i.e. the molecule is modelled by a simple spring connecting two 
dumb-bells. Although not used here, Tanner ( 1 9 7 5 ~ )  has proposed a model which 
accounts for nonlinear springs, using an approximation to the inverse Langevin 
function, and for a variable friction factor, based on the square root of the number of 
submolecules. His results, although based on numerical computations, did not involve 
solving the stress equations in conjunction with an appropriate motion (or vorticity) 
equation but simply involved specifying the velocity field and obtaining results from 
the stress equations. Duda & Vrentas (1973) have obtained time-dependent numerical 
solutions (finite-difference technique) of the equations describing the non-Newtonian 
flow from a pipe of infinite length, through a sudden contraction to an infinitely long, 
smaller tube. The fluid considered in their work was a nonlinear viscous fluid, i.e. a 
Powell-Eyring fluid, and the investigation centred on entrance-flow effects on the 
size of the developed recirculation region. Numerical modelling of non-Newtonian 
flows has also been done by Townsend (1973). He applied the finite-difference technique 
to the Oldroyd equation for unsteady flow in a straight pipe of circular cross-section, 
but here, owing to the flow geometry, the nonlinear advection terms did not appear in 
the governing equations. 

Let us now turn to establishing the appropriate governing differential equations 
used in this investigation; for the interested reader the numerical procedure used can 
be found in Gatski (1 978). 

2. Governing equations and boundary conditions 
We are considering here a two-dimensional laminar flow of a non-Newtonian visco- 

elastic fluid; the problem can be formulated in terms of the vorticity and stream 
function and, of course, an appropriate constitutive equation. Since the fluid is in- 
compressible (the motion then being isochoric and the velocity vector solenoidal) 
and there are no external body forces, the time-independent (dimensionless) vortieity 

(2.1) 

wl = @-ti, n. (2.2) where 

In general in this paper, subscripts and superscripts preceded by a comma indicate 
covariant and contravariant spatial differentiation, respectively. As for the constitu- 
tive equation, Giesekus (1966) has shown that a dilute solution of linear-spring dumb- 
bells can be described by a convective Maxwell model for the additional stress due to 
the presence of the molecules. Thus for the total stress tensor, i.e. the part contributzd 
by the polymer as well as the usual Newtonian linear relationship with the strain rate, 
the appropriate (dimensionless) constitutive equation is 

equation is 1 .  - dnis. ?M 
ujw. j  - ak , im,  

where 
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R, is the solvent Reynolds number based on the mean inflow velocity U at the entrance 
to the flow domain, gjk is the contravariant metric tensor, A, is a time constant related 
to the molecular relaxation time, c i s  the concentration (in parts per million by weight) 
and [q] is the intrinsic viscosity (Peterlin 1966). It should be noted that the concentra- 
tion c can be related to the number of molecules per unit volume through Avogadro's 
number and the molecular weight of the polymer, and in the limit of zero concentration 
vc[q], where v is the kinematic viscosity, is simply the polymer-contributed shearing 
viscosity (Lumley 1971; cf. Tanner & Stehrenberger 1971). Also note that the non- 
dimensionalization has introduced the solvent Reynolds number R, into the constitu- 
tive equation (for the results presented here R, = 5000), and that in the limit of zero 
concentration the usual Newtonian relationship is recovered. Equation (2.4) can be 
recognized as the Oldroyd convective derivative (Oldroyd 1950) and the constitutive 
equation (2.3) corresponds to the one for the Oldroyd B fluid (the B fluid exhibits the 
positive Weissenberg effect; Oldroyd 1950). This model does not exhibit any shear- 
thinning behaviour, i.e. variation of the apparent viscosity with shear. The generality 
used in writing the above vorticity and constitutive equations was necessary because 
of the irregular boundary and the need to specify the boundary conditions on the 
different tensor quantities in a co-ordinate system other than a Cartesian one. Before 
considering the boundary conditions, let us first rewrite the vorticity and constitutive 
equations in the more familiar Cartesian frame; with the velocity given by 

uw, + vwu = a($., w)/d(x ,  y) = 7;: - 7;; + ( 7 2 2 -  711)zu, (2.7) 

722 + hl[u7Z2 + v7i2 - 2712vx - ~ T ~ ~ v , ]  

w = v  x u  -u =-v2 4, (2.11) 

where $is the stream function. Turning our attention now to the boundary conditions 
let us first consider the stream function. In (2.11) it  is necessary to specify either the 
value of $ (Dirichlet condition) or its normal derivative (Neumann condition) along 
the boundaries of the flow domain. Here we are doing the Dirichlet problem and begin 
by specifying the stream-function values at the entrance to the flow domain. It is 
assumed here that the inflow velocity profile is parabolic; then the stream-function 
values can be simply obtained by integrating the distribution from y = 0 (centre-line) 
toy  = 1.0 (wall). Owing to the symmetry of the flow domain the stream-function value 
along the centre-line must be constant ($ = 0) and owing to the solid boundary the 
stream-function value along the parallel and curved sections must also be constant 
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($ = 1.0). Finally, the straight outflow section is assumed to be sufficiently long that 
the velocity is simply a function of y (in the numerical computations on this set of 
equations (Gatski 1978) this assumption was found to be quite satisfactory). Now 
consider the vorticity equation. 

From the equations it is seen that both the vorticity and the stresses need to be 
specified along the boundaries of the domain. Let us first determine the vorticity 
conditions. Along the centre-line the vorticity must be zero and at the entrance the 
vorticity is simply determined by differentiating the parabolic velocity profile. Along 
the parallel-walled sections of the solid boundary and at the exit of the domain the 
vorticity is given by (2.11) subject to the conditions of non-porous walls and a non- 
evolving flow in the streamwise direction, respectively. Since vorticity is a pseudo- 
vector and the only vorticity component is perpendicular to the x, y plane (see figure l ) ,  
the distribution of vorticity values along the curved boundary can be determined 
from (2.11) or from a corresponding equation formulated in terms of a co-ordinate 
parallel and perpendicular to the curved boundary. NOW that the boundary conditions 
for the kinematic variables have been specified we turn our attention to the non- 
Newtonian aspects of the problem, i.e. the specification of the stress boundary con- 
ditions. 

Since the flow is symmetric about the centre-line, the 712 shear stress is simply equal 
to the extra stress due to the presence of the molecules there, and, if the molecules are 
unstretched a t  the entrance, the shear stress along the centre-line is zero. As for the 
normal stresses, a cursory treatment of (2.9) and (2.10) reveals that these equations 
yield differential boundary conditions for both normal stresses along the centre-line 
and that the stresses are non-zero and not equal to the usual Newtonian values. A t  the 
entrance to the flow domain, the flow is assumed paralIel; therefore the stress con- 
ditions applicable at the entrance are 

712 = 2( 1 + c[r ] )  B,lS'2, (2.12) 

7" = 8B,'h1c[r] (h'12)2, (2.13) 

7-22 = 0. (2.14) 

Note that the shear and cross-stream normal stresses are essentially Newtonian values 
and only the streamwise normal stress is different. In addition, note that these stress 
conditions are applicable for any parallel flow. Let us now consider the boundary 
conditions along the solid walls. Using the conditions that the tangential and normal 
velocities are zero along the solid boundaries, one can obtain from (2.8)-(2.10) the 
conditions along the parallel-walled boundaries. The shear- and normal-stress distribu- 
tions that result are the same as those obtained at the entrance, i.e. (2.12)-(2.14). 
Along the curved section of the boundaries the tangential and normal velocities are, 
of course, zero; however, even though the above rdationships between stress and the 
strain rate still hold, one must now refer to physical components of the stress and strain- 
rate tensors in a co-ordinate system parallel and perpendicular to the boundaries. 
This means that in solving the governing equations, which are expressed in terms of 
Cartesian components, one needs to transform the physical components of the second- 
order tensor quantities in the curvilinear system to the respective Cartesian com- 
ponents (Gatski 1978). Finally, the only stress conditions that need to be specified are 
those at the exit of the flow domain. These conditions can be easily determined if one 
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recalls that at  the exit of the domain the flow was assumed parallel; hence the same 
assumption here allows us to use the stress conditions (2.12)-(2.19) for the exit 
boundary conditions. Recall a t  this point that the boundary conditions on the strain 
rate are obtainable directly from the stream function and stress distribution already 
presented by applying the Newtonian limit of zero molecular relaxation time and zero 
concentration and using the fact that the Newtonian stresses and strain rates are 
linearly related by 2 R i 1 .  

It should be noted that these boundary conditions on the various flow variables 
dictate the behaviour of the fluid in the interior of the domain. For &ample, the 
boundary conditions on the'stresses clearly indicate that it is the streamwise normal 
stress that most strongly dictates the extent that the non-Newtonian fluid deviates 
from the behaviour of the Newtonian fluid and, as will be seen in the next section, it is 
this 7 1 1  normal stress that is related to molecular expansion. 

3. Molecular extension and pressure distribution 
A measure of molecular extension along the centre-line can be given by the variance 

tensor of position Iik (e.g. Lumley 1971; Giesekus 1962), which for the dumb-bell 
model (two masses held together by an elastic restoring force) of a molecule represents 
the mean-square location of one mass relative to the centre of mass. The position 
tensor Iik can be related to the additional stress due to the presence of the molecules, i.e. 

where r is the equilibrium radius of the molecule and 7(m)ik = 7ik - 2R;lSik is the 
extra stress due to the presence of the molecules. By introducing the total stress tensor 
into ( 3 .  l),  one can solve for the square root of the position tensor to obtain a measure 
of molecular distortion: 

Along the centre-line we are interested in a measure of axial extension; hence the 
component of interest is I11 and (3 .2 )  becomes 

Since the streamwise normal-stress and strain-rate distribution can be determined 
from the numerical solution of the motion and constitutive equations (Gatski 1978), 
(3 .3 )  enables one to determine the amount of axial stretching. In order to get a theo- 
retical estimate of the same quantity, consider the following differential equation for 
the tensor of molecular distribution I ik  (e.g. Lumley 1 9 7 2 ~ ) :  

From this equation we can once again solve for the normalized streamwise com- 
ponent of the distribution tensor: 

(311'/r2)4 = (1  - 2Sh,)-b, (3 .5 )  
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FIGURE 2. Molecular extension along centre-line of contraction. 

where S = u,. Note that the above expression is independent of c[y], indicating that 
the only relevant parameter of the polymer additive in the flow of a dilute suspension is 
the molecular relaxation time A,. In  addition note that this equation has a singularity 
at  2SA, = 1;  this, of course, is physically unrealistic and is due to the fact that the 
motion and flow were assumed steady and, in addition, reflects an inadequacy of this 
linear spring model. We shall not attempt here to introduce a limit to the extension 
such as an upper bound corresponding to the total molecular length (e.g. Tanner 
1975 b). In  figure 2 molecuIar extension, both theoretical and computational, is 
plotted vs. distance downstream along the centre-line for two values of 284.  The 
values of the Reynolds number R, and C [ T ]  were 5000 and 1.0 respectively. These 
values allowed for a well-defined flow pattern and a discernible difference between 
the stress levels of the non-Newtonian and base Newtonian (solvent) flows. The larger 
value of 2Sh, presented corresponds to a value of A, of 9.0 x which was the 
maximum value of A, used owing to numerical instabilities encountered in the com- 
putations (Gatski 1978). As can be seen from the figure the moIecuIar extension 
obtained from the computational data using (3.3) agrees very well with that predicted 
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FIGURE 3. Sll strain-rate distribution along centre-line of flow domain. 

by ( 3 . 5 ) .  Notice, though, that at 2Sh1 = 0.271 the curve has developed a small ampli- 
tude spike in the region of maximum extension. The same type of spike is found in the 
strain-rate distribution along the centre-line (figure 3) and is an artifact of the abrupt 
change in curvature at the interface between the boundaries of the contraction and 
outflow region in the discretized computational field. Therefore, with an increase in 
the relaxation time, this irregularity in the strain-rate distribution is more effectively 
communicated to the 711 normal stress through the corresponding constitutive equa- 
tion. Also included in figure 3, for comparison, is the inviscid strain-rate distribution 
for this particular contraction (note that S1 scales with the contraction ratio in the 
inviscid problem). The magnitude of S1' is larger in the non-Newtonian problem (and, 
of course, in the base Newtonian problem) because the boundary layers effectively 
reduce the contraction width, thus causing higher velocities and hence a larger accelera- 
tion. The region of constant strain rate is smaller because of the large recirculating 
flow which exists in the corner of the upper contraction region. Finally, it is of interest 
to look at the overall root-mean-square radius (31ii/2r2)*. From figure 4, it is seen that 
the total size of the molecular chain does increase, by virtue of the fact that the axial 
extension is greater than the transverse compression of the molecule. As will be seen 
below, this increase in size is partly a consequence of the pressure distribution on the 
molecule. 
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FIGURE 4. Variation of molecular distribution tensor along centre-line. 

From the above, an additional result, which is of interest along the centre-line, is 
the pressure. It has been shown that the pressure drop decreases relative to the 
Newtonian value along the centre-line, i.e. for uniform axial acceleration (as was the 
case along the centre-line) a smaller pressure gradient is needed to maintain the non- 
Newtonian flow (Lurnley 1972b; Metzner, Uebler & Chun Man Fong 1969). Figure 5 
shows the Newtonian and non-Newtonian (A, = 9-00 x e[q] = 1.0, R, = 5000) 
pressure distributions. As can be seen, the curves are relatively close throughout most 
of the contraction and begin to diverge only in the region where molecular stretching 
becomes dominant. In  order to explain a decrease in pressure drop the effect of the 
transverse forces must be examined, since in the absence of these forces increasing the 
axial tension to produce stretching would cause an increase in the pressure drop. The 
pressure is the (negative) average of the normal stresses, so a decrease in the pressure 
drop (pressure increase) means an increase in the (negative) average normal stress. 
Since the axial normal stress increases (causing extensions, figures 2 and 4), or the 
(negative) axial normal stress decreases, the (negative) transverse normal stress must 
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FIGURE 5. Compmison of Newtonian and non-Newtonian pressure distributions. 
0 ,  Newtonian; x , non-Newtonian. 

increase even more, resulting in an increase of the average. Thus the compressive 
stress required to compress the molecules transversely is greater than the tension 
required to stretch them axially (Lumley 1972b). 

4. Contours of flow variables throughout domain 
Let us now turn our attention to the contour plots of the various flow variables for the 

non-Newtonian flow characterized by the flow parameters R, = 5000, A, = 9.0 x 
and c [ q ]  = 1.0. As indicated earlier, details of the numerical modelling and the choice 
of flow parameters can be found in Gatski (1976). First, the streamlines are presented 
in figure 6 (a). 

As can be seen, a large recirculation region has formed in the corner of the domain. 
The interesting feature of this region is the fact that its size has decreased relative to  
that in the flow of the Newtonian fluid through the same configuration (cf. figure 6 b ) ;  
specifically, in the non-Newtonian case the separation point occurred at x = 0.68 
whereas in the Newtonian case it is at x = 0.60. This relocation of the separation point 
further downstream means that in the non-Newtonian flow the fluid velocity did not 
decelerate as quickly as in the Newtonian case. One possible reason for this slower 
deceleration is t,hat the adverse pressure gradient in the non-Newtonian flow is less 



Non-Newtonian steady two-dimensional $ow 633 

't 
X 

FIQURE 6. Streamlines for (a) a non-Newtonian and (b )  a Newtonian fluid in the flow domain. 

than that in the Newtonian case. However, figure 7 shows that this is not the case; 
in fact, the non-Newtonian pressure distribution near the wall (y = 0.98) is higher. 
It would appear then that molecular stretching occurs in this region (although on 
a very limited scale compared with the centre-line), since molecular compression would 
cause a pressure decrease (relative to the Newtonian value), and that i t  is not a change 
in pressure distribution that causes the delayed separation. Further numerical tests 
indicated that this delay in separation was a function of concentration, i.e. a higher 
concentration produced further downstream separation. This increase in the term 
c[q] lowers the apparent Reynolds number of the flow (recall the factor 2( 1 + c [ q ] )  R i l  
in the constitutive equation) and, in addition, decreases the ratio (1 + c[q])-l  of the 
retardation time to the relaxation time (the retardation time is the time it takes for 
the strain to  fall to e-l of its original valoe and is given here by A,( 1 + c[?])-l). It has 
been found that this decrease in retardation time increases the elasticity of the fluid, 
causing velocity overshoots in certain time-dependent flows (Waters & King 1971). 
For example, in unsteady Poiseuille flow, the velocity near the wall is larger than the 
corresponding Newtonian velocity in the initial stages of development. An analogy 
with this behaviour can be formed in this steady-state problem by viewing the flow from 
a Lagrangian frame. Then the observed increased flow velocity can be explained by 
the increased elasticity effects as c[q]  is increased. Of course, since the flow is steady 
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FIGURE 7. Pressure distribution near solid wall. 0 ,  Newtonian; x , non-Newtonian. 
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FIGURE 8. Vorticity contour lines for a non-Newtonian fluid in the flow domain. 

the streamlines represent the paths (streaklines) that tracer elements would follow if 
injected into the flow. It should be noted that experimental results such as those 
obtained by Metzner et al. (1969) for flow from a large duct into a small tube indicate 
the occurrence of a larger recirculation region in the non-Newtonian flow though 
there was no such occurrence for the Newtonian flow in the same geometry. Here the 
Newtonian flow did produce a recirculation region and the geometry in this case 
displays a much smoother transition to the smaller outflow region. These two dif- 
ferences, especially the different geometry, explain the differing flow responses 
to the non-Newtonian fluids. Now let us briefly look at the other kinematic variable 
of interest, the vorticity. 
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FIGURE 9. Shear-stress contour lines for a non-Newtonian fluid in the flow domain. 
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Vorticity contours are shown in figure 8. Notice that the contour w = 0 along the 
solid boundary emanates from the points of separation and reattachment as indicated 
in figure 6(a). This is consistent with the fact that along the solid boundary in the 
inflow region w = uyIwall and this point of separation corresponds to the point of zero 
shear. Further examination of figure 8 reveals that large amounts of vorticity are 
concentrated near the contraction wall. From the stream-function data one can esti- 
mate the displacement thickness in an area midway through the contraction region 
(Gatski 1976). Such a calculation yields a displacement thickness of 6* - 0.02. 
However, this result, obtained by taking the area under the velocity profile a t  a point 
in the contraction region, does not correspond to an estimate obtained using the 
relation 6* - (R,S1)-4, where S1 is the strain rate a t  the point in question. Since 
here R, = 5000 and S1 = 15.0 a t  this point (Gatski 1976) a value of 6* - 0.00365 is 
obtained. This discrepancy can be explained by taking into account numerical 
viscosity (Roache 1972, p. 64). As is well known, these numerical errors occur when 
one-sided or upstream differencing is used on the advection terms. This additional 
viscous effect is of the order of +vA, where A is the grid spacing ( = 2.0 x and v is 
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FIGURE 11. 711 normal-stress contour lines for (a) a non-Newtonian and (6) a Newtonian 
fluid in the flow domain. 

some local velocity. Near the wall 0 E 3.0 (Gatski 1976) and the artificial viscosity is 
3.0 x 10-2 (which corresponds to a computational Reynolds number of R, = 33.0). 
Now letting 6" N (vA/2S11)& one obtains for 6* a new estimate of 0.0497, which is 
more in line with the computational result. Although artificial-viscosity errors are 
present the results along the centre-line, away from the wall region, should not be 
affected. Up to this point we have looked a t  the kinematic variables, the stream func- 
tion and vorticity, but now let us examine the stresses, which characterize the non- 
Newtonian features of the flow. 

First let us look at the 712 shear-stress contours (figure 9) and the 7 z 2  normal-stress 
contours (figure 10). Recall that the boundary conditions for these variables were 
essentially Newtonian conditions. For example, the boundary condition for the 712 

shear stress was the Newtonian linear relationship between the stress and the deformit- 
tion rate with an additional factor of 1 + c[y], while for the 722 transverse normal stress 
the boundary values at inflow and along the solid boundaries were simply zero, once 
again as in the Newtonian case. At this point a remark concerning the interpretation 
of the Cartesian stress components in the mid-section of the domain, where the flow is 
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FIQURE 12. Contours of the strain rate in principal axes. 

not parallel to the co-ordinate system, is in order. The 712 shear stress, for example 
(note that analogous statements can be made concerning the Cartesian components 
of the normal stresses), is the shearing stress set up by a shearing motion in which 
parallel Iayers of fluid, which in the Cartesian system means parallel in the x direction 
for r12, move relative to one another. In  the mid-section of the domain, however, the 
only appropriate co-ordinate system, i.e. one in which the shear stress is indeed a tan- 
gential force on a fluid element, would be one which is parallel and perpendicular to the 
streamlines. For this reason i t  is difficult to make any concise statements concerning 
the behaviour of the shear stress (or normal stress) in this region of the flow domain. 
Returning now to a discussion of the stresses, one sees that since the shear stress and 
transverse normal stress have essentially Newtonian characteristics throughout the 
flow the distinctive features of the non-Newtonian flow must be contained in the 711 
normal-stress distribution. These non-Newtonian 711 normal-stress contours are 
plotted in figure 11 (a)  and, for comparison, the Newtonian streamwise normal stress 
is shown in figure 11 ( b )  (recalling that 722 = - r for a Newtonian fluid, one sees that 
the non-Newtonian 722 normal-stress contours (figure 10) are indeed similar to their 
Newtonian counterparts in figure 11 b ) .  As can be seen, the magnitude of the stress 
levels has effectively doubled in most of the domain (not affected by molecular 
stretching) but, more important, the qualitative behaviour in the contraction region 
has changed substantially. This qualitative change can be explained if one considers 
the principal axes of the strain rate in the domain. The eigenvalues of the strain-rate 
matrix are given by 

and the contours of these strain rates (in principal axes) are given in figure 12. The 
important feature of this plot is the nature of the contours in the contraction region. 
Comparison of the qualitative features of the eigenvalue contours and the non- 
Newtonian 711 normal-stress contours indicates a coupling of the two variables. What 
has happened is that the molecules have aligned themselves with the principal axes, 
the deviation from the axes being a function of vorticity. Hence the characteristics 
of the non-Newtonian streamwise normal stress, i.e. the molecular component, are 
now similar to the characteristics of the strain-rate eigenvalues (the degree of simi- 
larity being a function of molecular alignment). Finally, note that in figure 11 (a)  the 

hrn = - = [(fp)2 + (512)2]$ (4.1) 
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negative non-Newtonian rl1 stress levels have moved upstream relative to their 
Newtonian counterparts. This means that the extensional forces are increasing in 
the lower contraction region and, from further computational tests, are a function of 
the elasticity of the fluid. With a knowledge of the eigenvalues of the strain-rate matrix 
one can also determine whether the flow under investigation is a strong or a weak 
flow (Tanner 1976). Tanner points out that the flow is weak, i.e. molecular extension 
is small, if det [U~,~A,-&.Y~~] < 0, or following Lodge (1964) it is weak if simply 
S,,A, < 4. In  the contraction region the above criteria are both satisfied, indicating 
a relatively weak flow and a small first normal-stress difference (Tanner &, Stehren- 
berger 1971). This is a consequence of the small value for A, needed for stable computa- 
tions. Finally, the results of Tanner (1976) give a Weissenberg number Nwi in this 
contraction region of 0+24[exp (2Sl1A,) + 2 exp ( - S1lAl - 3)lb. 

5. Concluding remarks 
The investigation described here was an attempt to model numerically the full set 

of equations describing the steady flow of a non-Newtonian fluid through a complex 
geometry. If one is to understand fully the behaviour of macromolecules in a turbulent 
flow it is, of course, necessary to choose an appropriate constitutive equation as well 
as to model the turbulence itself. The full turbulent problem would require additional 
equations or models for the Reynolds stresses, and such a problem would naturally be 
limited by present computer capabilities. Our approach here was to experiment in 
a laminar flow with a numerical solution of the full set of equations governing the 
motion, including a rather complex constitutive equation. Such a flow with a varying 
vorticity field could give information on molecular behaviour which might occur in 
a turbulent flow, where the vorticity and strain-rate fields are randomly distributed. 
It was found that the character of this system of equations causes numerical problems 
which must be solved before extensive stretching of the molecules can be observed. 
For industrial applications in complex geometries, problems arise at irregular 
boundaries, forcing co-ordinate transformations for finite-difference methods or 
inversion of large-order matrices for finite-element methods. It appears that in the 
next step in the full numerical modelling of these equations a more efficient numerical 
technique is needed and, in addition, a more sophisticated constitutive equation 
could be used to model better the molecular extension. Nevertheless, our attempt here 
can act as a basis for future work in the area of polymer flows since a complete picture 
of the behaviour of the flow can be achieved only through the solution of a full set of 
equations and not just through a specification of a flow field and observation of the 
response of the fluid. 
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